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Mathematical Problem-Solving Processes and Performance:

Translation among Symbolic Representations

Researchers in mathematics and mathematics education and

cognitive psychologists have long recognized that a very

important, if not essential, component of successful problem-

solving is the ability to translate between different symbolic

representations of information (e.g., Clement, Lochhead, & Monk,

1980; Hooper, 1981; Janvier, 1937; Kaput, 1987; Lesh, Post, &

Behr, 1987; Lesh, Landau, & Hamilton, 1983; Nesher, 1982;

Shavelson, 1981; Shavelson & Salomon, 1985; Silver, 1985).

Problem-solving often involves translating from the symbolic

representation of the problem as given (typically words and

numbers) to another symbolic form that more readily leads to a

solution (e.g., diagram, graph, picture, algebra, words, or some

combination of these). Yet, as has been demonstrated in some

well-known studies, students at all ages have difficulty

translating from one representation to another (e.g., Clement et

al, 1980; Galvin & Bel, 1977; Nether, 1979; Paige & Simon,

1966).

Although researchers and theorists recognize the importance

of being able to translate among symbolic representations, we

have only a limited understanding about the exact nature of

students' abilities and difficulties in making translations.

Furthermore, we know little about the extent to which their
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patterns of performance are linked to the symbolic

representations and kinds of translation used in instruction.

The main issue addressed here is that students have rarely

been asked to solve problems on the same topic that

systematically vary the symbolic representation of both the

problem as given and the response that is required. Only a

systematically varied set of problems can reveal the skills

students have in dealing with different kinds of translation.

That is, a comprehensive set of problems is needed to know

whether it is possible to generalize students' skills in

translation from one problem type to another. Furthermore,

students' ability to translate across symbolic forms cannot be

separated from the effects of instruction. If students can

perform translations that are routinely practiced during

instruction but have difficulty performing translations that are

not covered in instruction, differences in performance would be

attributable'to instruction, not to inherent difficulties in

certain kinds of translation. Systematically investigating the

relationship between the kinds of translation used in

instruction and students' problem-solving processes and

performance is an important first step in clarifying the role of

instruction.

The study reported in this paper was designed to address

the issues just described. It collected information about

students' performance on problems varying in symbolic form and

the kinds of symbolic representations and translation used in
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instruction. Particular attention was paid to the symbolic form

of the response required as well as that of the problem given.

In a previous study (Shavelson, Webb, Shemesh, & Yang, 1987),

the symbolic form of the response required influenced students'

problem-solving processes and performance more than did the form

of the problem given. In particular, students applied the same

numerical or algebraic algorithm whenever the response required

was numerical, regardless of the form of the problem as given,

but the response required (numerical or verbal description)

markedly influenced how students solved the problem. The present

study, then, used a greater variety of symbolic forms of the

response required (graph, picture, number, algebra, words).

Method

Sample. The sample consisted of 29 students enrolled in an

Algebra II class in an eight-week summer instructional program

for minority students. All students were Black or Hispanic and

most were about to enter grade 11.

Materials. For two topic areas, solving simultaneous

equations in two unknowns and distance-rate-time relationships,

sets of problems were developed that varied the symbolic form of

the problem as given (words in a story problem, graph, diagram,

algebra) and of the response required (words, graph, diagram,

algebra). All other aspects of the problems (e.g., context,

numbers used, complexity of the equations) were controlled to

make the problems as parallel as possible except for symbolic

form. Approximately half of the problems were open-ended; the
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remaining problems were in multiple choice form to shorten the

time necessary to solve them. Even for problems in multiple

choice form, however, students were encouraged to explain their

reasons for selecting their responses.

Data on teacher instructional methods came from the printed

materials the teacher used, students' notes during the classes,

and interviews of the teacher. This information was analyzed to

determine the variety of symbolic forms used in instruction and

kinds of translation explicitly discussed.

Results

The analyses presented here focus on problems that concern

the same topic but vary either the symbolic form of the problem

as given, the symbolic form of the resoonse required, or both.

The two topics are solving two equations with two unknowns and

issues related to distance-rate-time.

Solving Two Equations With Two Unknowns

Four problems on the individual test concerning solving two

equations with two unknowns varied both the symbolic form of the

problem as given (word problem vs. algebraic equations) and the

symbolic form of the response required (numerical vs. verbal).

Problem 1 was a traditional word problem requiring a numerical

response; problem 2 presented two equations for students to

solve; problem 3 presented a word problem and asked students to

explain, without solving the problem, why two particular

erroneous solutions were incorrect; and problem 4 presented two

5
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algebraic equations and asked students to select the word

problem that was best described by the equations (see Figures 1

to 4).

Students' responses to these problems were scored in two

ways: presence of conceptual and procedural errors. Examples of

conceptual errors included setting up the equations incorrectly

(problem 1), trying to substitute one equation into itself

(problem 2), insisting that erroneous solutions to a word

problem were correct (problem 3), and selecting a word problem

that did not correspond to the equations (problem 4). Procedural

errors consisted of arithmetic mistakes, such as incorrectly

multiplying an equation by a constant (particularly negative

constants). Initially, students' responses were scored

according to the severity and frequency of errors. However,

because the results were nearly identical to those scoring only

the presence vs. absence of a conceptual or procedural error,

the latter scoring is presented here for parsimony. A score of

1 indicates no error; a score of 0 indicates an error.

Individual performance. Table 1 presents the means and

standard deviations for conceptual understanding scores for the

four problems. The data were analyzed using a two-way repeated

measures analysis of variance (symbolic form of problem as given

vs. symbolic form of response required). As the results in

Table 1 suggest, there was no main effect for either the

symbolic form of the problem as given (F(1, 17) = 0.49, n.s.) or

the symbolic form of the response required (F(1, 17) = 0.49,
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n.s.). The interaction between the two factors, however, was

significant (F(1, 17) = 11.33, p < .005). Student performance

was highest when the symbolic form of the problem as given

corresponded to that of the response required (word problem -->

words; algebraic --> numerical). Student performance was

significantly worse when the symbolic form of the problem as

given did not correspond as closely to the symbolic form of the

response required (word problem --> numerical; algebraic -->

word problem). These results suggest that translation from one

symbolic form to another (from problem as given to response

required) added a degree cf difficulty that was not found in the

other problems.

To examine whether individual performance was consistent

across problems, pairwise correlations were computed. None of

the correlations were statistically significant. This result

shows that individual students varied in their ability to

translate across symbolic forms. For example, even though mean

performance was similar for items 1 and 4, individuals who did

well on item 1 (word problem --> numerical response) were not

necessarily the same as those who did well on item 4 (algebraic

equations --> word problem). The same interpretation applies to

items 2 (algebraic equations --> numerical response) and 3 (word

problem -->words). Ability to perform one kind of translation

does not predict students' ability to perform another kind of

translation.
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Data about performance on procedural aspects of the

problems (arithmetic skills) are presented in Table 1. (Item 4

did not measure procedural skills and so is not included here.)

A one-way repeated analysis of variance showed no significant

differences between mean procedural scores (F(2,34) = 0.43, p <

.66). Students' tendencies to maze arithmetic errors did not

depend on the kind of translation between symbolic forms

required by the problem. Furthermore, at least on one pair of

probler..s (1 and 2), the correlation for procedural performance

was statistically significant (r = .61, p < .005). This

suggests that, for these two problems, an individual student's

procedural performance was consistent. In all, the results show

more consistency of performance across problems for procedural

skills than for conceptual understanding. If one is interested

in measuring procedural skills, the type of problem given

students to solve is less critical than it is for measuring

conceptual understanding.

To measure students' rmnsistency of conceptual

understanding and procedural skills, correlations were computed

between conceptual arld procedural performance for each item.

Only for one item (2) was the correlation statistically

significant (r = .38, p < .05), suggesting that students'

conceptual understanding and procedural skills Ere largely

uncorrelated.



Relationship between student performance and instruction.

The interpretation
given of the findings in Table 1 is that

translation between different symbolic forms makes problems more

difficult for students than translation between symbolic forms

that closely correspond. An alternative
explanation is that the

performance shown in Table 1 might be a reflection of

instructional experience, rather than due to inherent

difficulties with translation per se, with the higher

performance corresponding to kinds of translaion between

symbolic forms that were covered and practiced extensively in

the class and the lower performance corresponding to kinds of

translation that were not covered or practiced in the class. To

test such an interpretation, information about students'

instructional experiences was collected from various sources:

course syllabi, handouts, quizzes, tests, homework assignments,

reading materials, students' notes taken throughout the course,

and interviews with the instructor.
Analysis of the materials

indicated that instructional experience did not account for the

results reported in Table 1. Students had considerable practice

with all types of problems with the exception of problem 3

(explaining why erroneous
solutions to a word problem were

incorrect). Yet performance on problem 3 was near the best among

the four problems. Students had the most practice solving word

problems (translating between verbal presentation and numerical

response) and generating word problems that corresponded to

pairs of equations (translating between algebraic equations and
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verbal descripti._ .0, and yet showed the worst performance on

problems of these types.

Distance-Rate-Time Relationships

Two kinds of problems concerning distance-rate-time

relationships appeared on tae test: problems assessing whether

students knew and could apply the formula D=RT (distance = rate

x time) as well as substitute the correct values into the

formula, and problems assessing their understanding of relative

speed from graphs of time vs. speed. Each problem type is

considered in turn.

Application of D=RT formula. Three problems on the test

measured students' ability to apply the formula D=RT (see

Figmres 5 to ?) . Problem 5 posed a simple word problem for

students to solve. Problem 6 presented a graph of time vs. speed

and problem 7 posed a similar proolem as a word problem; both

problems asked students to select the correct numerical

expression for the distance traveled. Problems 6 and .7 were

designed to be as comparable as possible to test the effects of

the symbolic form of the information given (graph vs. verbal

description). As was the case for the problems involving solving

two equations with two unknowns, scoring for severity of error;

and scoring merely for the occurrence of errors produced nearly

the same results, so the results of the latter scoring method

are presented here for parsimony. The problems were scored in

two ways: (1) a score of 1 was given if students gave or

selected the correct relationship among variables (D=RT) and a
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score of 0 was given for giving or selecting the wrong

relationship (D=T/R), and (2) a score of 1 was given if students

selected the correct times and speeds and a score of 0 was given

otherwise.

Student performance on the three D=RT problems is given in

Table 2. A one-way repeated measures analysis of variance of the

scores for applications of the D=RT formula was significant

(F(2,34) = 6.18, p < .006). Further analyses showed that the

difference between items 6 and 7 was not significant. This

result suggests that the symbolic form of the problem as given

(graph vs. word problem) had little effect on mean performance,

possibly because the response required (numErical expression)

was the same in both cases. Interestingly, however, the

correlation between problems was not significant (r = .06),

showing that students who could correctly select the D=RT

relationship for one problem could not necessarily do so on the

other problem.

The superior performance of students on problem 5 suggests

that students' ability to apply the D=RT relationship on a

simple one-step problem does not imply that students will be

able to apply the relationship in n multiple-step problem.

Students' performance on these three problems on their

ability to select the correct numbers for rate and.time is also

given in Table 2. A one-way repeated measures analysis of

variance was not significant (F(2, 34) = 2.53, p < .10).

Furthermore, the correlation between problems 6 and 7 was

11
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significant (r = .54, p < .01). (Correlations with problem 5

could not be alculated due to lack of variance for that

problem.) These results suggest that students' ability to

select the correct numbers for rate and time were consistent

across these problems and did not depend on the symbolic form of

the problem as given nor on whether the problem was one-step or

multi-step.

Understanding speed from graph;. Figures 8 to 11 give the

four problems that assessed students' understanding of speed

from graphs of time vs. speed. The directiou of translation in

the four problems were the following: graph to words in problem

8, picture to graph in problem 9, words to graph in problem 10,

and graph to picture in problem 11. Performance on these

problems (on a 0 vs. 1 scale as for the previous items) appears

in Table 2. A one-way repeated measures analysis of variance

was significant (F(3, 57) = 9.75, p < .001) . Post hoc

comparisons revealed that problem 8 was significantly easier

than the other problems, and that problems 9 and 11 were

significantly different.

In comparing the performance of students across these

problems, it is reasonable to suspect that problem 8 was easier

than the rest due to the following: (1) it involved car

traveling on roads rather than biking uphill and downhill, and

(2) it involved only two nonzero speeds. Nonetheless, we still

believe that student performance would have been good had those

other features been introduced. If so, then translating from a

12
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graph into words was the easiest task for students. (Of course,

this problem should be revised in future studies to make it more

comparable to the others.) Similarly, problem 11 may have been

more difficult than the others due to the lack of e. "stop",

rather than because of the particular direction of translation

(graph to picture). Even with these qualifications, the

difference in performance suggests that some directions of

translation are easier than others.

All of the correlations among problems 9, 10, and 11 were

statistically significant
(ranging from .42 to .65, p < .03 to

p < .002). The correlations with problem 8 were not significant

due to the lack of variability in performance on this problem

(all students except one got it right.) These results suggest

that the order of difficulty of the kinds of translation was

consistent across students.

Relationship between performance and instruction. Analysis

of the course materials and interviewing the instructor revealed

that students had practice with all of these types of problems.

In fact, for translating between graphs and other

representations, students worked on problems that were

considerably more complex than those used in the current study.

So, differences in performance on these problems were probably

not due to differential exposure to them in the course.

Discussion

13
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This study has several implications for research and

practice in mathematics education and testing. First, presenting

students with only conventional symbolic representations of

problems (typically, numerical, algebraic, or story problems

requiring numerical answers) is likely to give a limited picture

of students' mathematical problem-solving abilities. Students

can memorize algorithms for clearly identified problem types

presented in conventional ways (see, for example, Mayer, 1981)

and yet be unable to solve problems involving the same concepts

but presented in different symbolic forms.

Second, it is possible to understand students' difficulties

in translating among symbolic representations by systematically

varying the symbolic form of problem and response required.

Such a test or measure can have important diagnostic value in

the classroom. The data presented here suggest that the

symbolic form of the response required plays a critical role in

determining performance, yet this feature of problems is rarely

recognized as an important source of variation in performance.

A third, related, point is that using alternative symbolic

forms of the response required may be a good way to measure

students' conceptual understanding of mathematics. Problems

requiring numerical responses typically involve procedural

skills as well as conceptual understanding. It is often

difficult to disentangle the two, particularly on tests with

multiple-choice response formats. Asking students to think

14
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through a problem requiring a different (non-numerical)

representation may yield less ambiguous information about what

students do and do not understand.

Fourth, the kinds of translation between symbolic forms

covered during instruction did not seem to play a major role in

this study. Students had practice with virtually all of the

kinds of translation in the problems presented °I. the test, yet

their performance differed markedly across different problems.

It is possible that differences in performance across problems

would have been accentuated still further if the instructor had

covered fewer kinds of translation. To examine the role of

instruction systematically, future studies should compare

performance for instruction varying in kinds of translation

covered.

A final word should be said about the limitations of this

study and the implications for the design of future studies.

The instructional program examined in this study was a special

one--a summer course for promising minority students in

mathematics. The students who participated in the course had

been identified by previous teachers as having potential for

learning mathematics and science. Furthermore, the instructors

in the summer program are specially selected and have deep

commitments to teaching and to mathematics and science. As was

stated above, the features of this progra.a may have influenced

the results. Future studies should examine a range of students

populations and instructional settings, with larger samples, to
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determine the impact of these variables on students' ability to

solve mathematical problems presented in different symbolic

forms and requiring responses in different symbolic forms.
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Table 1

Performance on Problems Involving Two Equations and Two Unknowns

Symbolic Form of
Problem as Given

Symbolic Form of Response Required

Numerical Words

M SD M SD

CONCEPTUAL UNDERSTANDING

Words 0.56 0.51 0.75 0.44

Algebraic Equations 0.86 0.36 0.52 0.51

ARITHMETIC SKILLS

Words 0.83 0.38 0.75 0.44

Algebraic Equations 0.71 0.46 N.A. N.A.

Note: Words --> Numerical = Problem 1 (Figure 31

Algebraic Equations --> Numerical = Problem 2 (Figure 2)
Words --> Words = Problem 3 (Figure 3)
Algebraic Equations --> Words = Problem 4 (Figure 4)
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4

Table 2

Performance on Problems Involving Distance-Rate-Time Relationships

Problem M SD

APPLICATION OF D=RT FORMULA

5 (One-step word problem) 1.00 0.00

6 (Graph --> Numerical (multi-step)) 0.71 0.46

7 (Words --> Numerical (multi-step)) 0.56 0.51

NUMERICAL SUBSTITUTION INTO D=RT FORMULA

5 (One-step word problem) 1.00 0.00

6 (Graph --> Numerical (multi-step)) 0.81 0.40

7 (Words --> Numerical (multi-step)) 0.94 0.24

TIME VS. SPEED RELATIONSHIP FROM GRAPH

8 (Graph --> Words) 0.95 0.22

9 (Picture --> Graph) 0.62 0.50

10 (Words --> Graph) 0.50 0.51

11 (Graph --> Picture) 0.38 0.50
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John needs 120 yards of wooden planks to build a staircase. He
has $420 to spend. Oak is expensive, costing $4 per yard, pine
costs $3 per yard. Since he cannot afford to make an all-oak
staircase he would like to u..,, as much oak as possible. This means
he must spend all $420.

How much wood should he buy of each type?

tz4

Figx-e. I. -Too 6 tour-1C'°Az- amd "Two um-ki4-0Wr% s :

WOrck .4 Aurienta... ges pollSG
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Solve the system of two equaiions and two unknowns.

x + 2y = 35
5x+ y = 40

Fiv-Ce. P.,, TWo 6re-4z-711°o-4.
etia Taio a44-k-e4orAins :

141ebral c- P loeLS a /Varner-le-ea ge4p0Age..

26



Tickets for a baseball game cost $10 for box seats and $5 for
regular seats. 100 people came to watch the game and they paid a

total of $750.

Without solving the problem, explain why each of the following
statements cannot be true.

a. 90 tickets for box seats were sold.

b. 60 box seats and 30 regular seats were sold.

-9 0 d 74itetest7WAS
Flvre g. 7v a .

Words -) Vrh14.i Response
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Which word problem is best described by the two equations:

x*y=15

2x + 3y = 40.

a. Jim knows two pieces of gum and three licorice whips costs forty
cents; while any two pieces of candy together cost fifteen cents.
How much does each kind of candy cost?

b. Kate has two buckets. She knows that two small buckets of water
and three large buckets of water contain a total of forty gallons. It
takes her fifteen minutes to fill the small and large bucket at the
water pump. How long does it take to fill the small bucket at the
water pump?

c. Paul has fifteen balloons. The red balloons cost $2 apiece and the
silver balloons cost $3 apiece. If all the balloons are either red or
silver and Paul sells all his balloons for $40, how many silver
balloons did he have?

d. Two horse shoes and three cowboy hats cost forty dollars. I want
to buy a total of fifteen shoes and hats. How much is each cowboy
hat?

Fit,Wre'' 41 ". 7-"" .°144'Ca514
alACI Taf10

ant NA 9te.)As

fit,Gbrafee, 679-44aA Got2. --- Words
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Pa call skip six mkles per Pois . Vkovi lac a distance can he skip In
tour Pours?

filTiGre,
D Ki ..

One-sive peo6IefYi
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The graph below describes Mark's car trip,

90

80

70

Speed 60

(mph) 50

40

30

20

10

Naill=111=111.1111111=690

t
4

time (hours)

Which expression(s) best estimates the distance traveled?
(More than one answer may be correct.)

a. (2 x60)4(1.5 x40)4(.5 x0)

b. (60/2) + (40/1.5) (0/.5)

C. (60/1) (40/1.5) (0/.5) (60/1)

d. (1 x 60)4(2 x 40)4(1 x0)(1 x60)

e. (1 x 60)+(1.5 x 40)4(0 x.5)4(1 x60)
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On her motorcycle trip, Jennifer rode for two hours at forty miles
per hour, stopped for lunch for a half hour, rode one and a half hours
at sixty miles per hour, and rode for one hour at forty miles per hour.
Which expression best estimates the distance traveled on her trip?

a. (40/2)* (0/.5) + (60/.5) + (40/1)

b. (3 x 40) (.5 x 0)*(1 x60) +(1 x40)

c. (2x 40)*(.5 x 0)+Q.5 x 60)+(1 x40)

d. (2/40) + (.5/0) + (.5/60) + (1/40)
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The graph below describes the speed of a car on a trip.
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Which of the choices below best describes the journey?

time

t

a. Traveled on the local roads, got onto the highway, stopped for
lunch and got back onto the highway.

b. Traveled on local roads, got onto the highway, stopped for lunch
and got back onto local roads.

c. Traveled on the highway, stopped for lunch, got back on the
highway, traveled on local roads.

d. Traveled on the highway, stopped for lunch, traveled on local
roads, and got back onto the highway.
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Given the picture below, which graph best describes Sue's bike
trip?
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Jill lives at the top of Mt. Mc Goo. She bikes down the mountain,
over a flat lake bed, stops to change a flat tire and bikes up a short
N11 to Jack's house.

Which graph best describes her Journey?
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Linda went for a bike ride. The graph below describes her trip.
Which picture best describes her bike ride?
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